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I. ABSTRACT 
In this experiment, we were assigned Project H with two filters to design and build to 

meet certain specifications. For the first filter, we had a second-order Resonant Bandpass filter 

with a 360 Hz center frequency, quality factor of 12, and a 15 V/V peak gain. For the second 

filter we had a 5th order, 1db Chebyshev low-pass filter with a 303 Hz cutoff frequency and a 

passband gain of 15 V/V. 

Each component was derived by the use of transfer functions and included Chebyshev 

polynomials for the low-pass filter. After using theoretical analysis, we used PSPICE simulations 

to verify that the frequency response and step response plots would align with what we expected 

the filters to look like. We then proceeded to build each circuit using TL081 operational 

amplifiers, and we then measured the frequency response from 10Hz to 100 kHz. For the step 

responses of each filter, we used a square wave to approximate each unit step. 

Our measured data revealed that the bandpass filter reached a peak at around 360 Hz with 

a gain that was close to 15V/V being 13.98V/V. While the Chebyshev low pass filter had a sharp 

roll-off with a ripple slightly higher than 1dB estimating to be around 1.36dB it was still within a 

reasonable margin and was likely caused by component tolerances or limitations in the op-amps 

themselves. Overall, the measured results validated both the design approach and the accuracy of 

our simulations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   

 

 

II. BODY 
PART A: Bandpass Filter 

To begin this lab, we were first assigned a project letter which had its own set of 

specifications for what the filter should contain such as: the filter order, quality factor, passband 

gain, cutoff frequency, center frequency, and peak gain. For us, we were given project H with 

two separate filters to design. For the first filter (Filter #1) we had to build a 2nd order resonant 

bandpass filter, and for the second filter (Filter #2) we had a 5th order Chebyshev 1db low-pass 

filter (LPF). We will now begin constructing the resonant bandpass filter shown below.  

To construct the Bandpass filter, the following specifications must be noted down for the given 

project letter filter specifications table (Table 1) which are the following:  

  Filter #1   

Type Characteristic Center (f) Q Peak Gain (Ao) 

Bandpass 2nd order Resonant 360 Hz 12 15 V/V 
Table 1 - Filter Specifications for Bandpass Filter#1 

 

Once the band-pass filter requirements are defined, the next step is to size the passive 

components for the second-order resonant topology. Beginning with the standard second-order 

band-pass transfer function, we equate its coefficients to those of the Vout/Vin expression 

derived from the circuit schematic. 

The center (resonant) angular frequency, ω₀, is first calculated from the design target in  

Table 1: 

ω₀ = 2πf₀ = 2π × 360 Hz ≈ 2262 rad · s⁻¹ 

With ω₀ known and all capacitors selected as 0.1 µF for ease of matching, we can solve 

the resulting system of coefficient equations to obtain the required resistor values R₁, R₂, and R₃. 

These values ensure that the implemented network meets the specified passband and quality-

factor constraints while maintaining the desired gain and selectivity. 

Given 2nd Order Transfer Function 

𝐻(𝑠) =
𝐴𝑜 ∗ 𝑠 (

𝑤0
𝑄 )

𝑠2 + 𝑠 (
𝑤0
𝑄 ) + 𝑤02

 

𝐻(𝑠) =
(15) ⋅ 𝑠 (

2262
12 )

𝑠2 + 𝑠 (
2262

12 ) + 22622
 

𝐻(𝑠) =
(2828)𝑠

𝑠2 + (
2262

12 ) 𝑠 + 22622
 



   

 

Resonant Bandpass Filter Transfer Function 

𝐻(𝑠) =
−𝑠 (

1
𝑅1 ∗ 𝐶1)

𝑠2 + (
𝐶1 + 𝐶2

𝑅3 ∗ 𝐶1 ∗ 𝐶2)𝑠 + (
1

(𝑅1||𝑅2)𝑅3 ∗ 𝐶1 ∗ 𝐶2
)
 

Compare Coefficients that are Highlighted 

1

𝑅1 ⋅ 𝐶1
= 2828 

1

𝑅1 ⋅ (0.1𝜇𝐹)
= 2828 

𝑅1 = 3536Ω ,  𝐶1 = 0.1𝜇𝐹  

𝐶1 + 𝐶2

𝑅3 ⋅ 𝐶1 ⋅ 𝐶2
= 189 

(0.1𝜇𝐹 + 0.1𝜇𝐹)

𝑅3 ⋅ 0.1𝜇𝐹 ⋅ 0.1𝜇𝐹
= 189 

𝑅3 = 106103Ω ,  𝐶2 = 0.1𝜇𝐹  

 

1

(𝑅1 ∥ 𝑅2) ⋅ 𝑅3 ⋅ 𝐶1 ⋅ 𝐶2
= (2262)2 

1

(3536Ω ∥ 𝑅2) ⋅ 𝑅3 ⋅ 𝐶1 ⋅ 𝐶2
= (2262)2 

1

(
3536 ⋅ 𝑅2

3536 + 𝑅2
) ⋅ (106103Ω) ⋅ 0.1𝜇𝐹 ⋅ 0.1𝜇𝐹

= (2262)2 

 

𝑅2 = 194.32Ω  

Once the theoretical values for R₁, R₂, R₃, and the capacitors were determined, practical 

component selection followed. Each calculated resistance was matched to the nearest available 

standard value resistor, and the capacitors were chosen from the same preferred series to 

maintain tolerance consistency. The resulting band pass filter was then assembled with a single 

TL081 operational amplifier. The finalized schematic is presented below. 



   

 

 

Figure 1 - Resonant Bandpass Filter Circuit Schematic 

 

PART B: Bandpass Filter 

With the resonant band-pass filter assembled, its performance must be validated against 

the design targets listed in Table 1. This is done by recording an experimental Bode plot. With 

magnitude |Vout/Vin| on the y-axis versus frequency on the x-axis using a sweep or a series of 

discrete test frequencies across and beyond the intended passband. From this response we extract 

the mid-band (peak) gain A₀, the -3 dB bandwidth, and the quality factor Q, and then compare 

those values to the specification. A properly tuned second-order band-pass network will display 

the expected bell-shaped (inverted-parabolic) magnitude curve, confirming that the circuit meets 

its design specifications. 



   

 

 

To verify that the bandpass filter meets its design goals, we examined three quantities 

taken from the measured Bode magnitude response: the center (resonant) frequency fc, the -3 dB 

bandwidth BW, and the quality factor Q. 

 

Bode Plot 2 - Bandpass Filter Bode Plot (Decimal) 

Bode Plot 1 - Bandpass Filter Bode Plot (Decibels) 



   

 

Center frequency 

The magnitude curve peaks at 360 Hz, exactly matching the specified fc in Table 1. 

Mid-band gain: 

At fc the measured gain is 13.98 V/V (≈ 22.91 dB). Although the original target was 15 

V/V, the 7% shortfall was accepted by the instructor. 

Bandwidth and -3 dB points: 

When the plot is in linear units, the -3 dB level equals Ao ⁄ √2. Hence 

Ao ⁄ √2 = 13.98 V/V ⁄ √2 ≈ 9.02 V/V. 

The response reaches this value at 

fL = 345 Hz (lower corner) 

fR = 375 Hz (upper corner) 

Converting to angular frequency (ω = 2πf) and subtracting gives the experimental 

bandwidth: 

BWexp = 2π (375 Hz − 345 Hz) ≈ 188.5 rad s⁻¹. 

Comparison with theory: 

The theoretical bandwidth is BWtheory = ω₀ ⁄ Q = 2261.95 rad s⁻¹ ⁄ 12 ≈ 188.5 rad s⁻¹, 

identical to the measured value. 

Quality factor: 

Using the frequency definition, Q = fc ⁄ (fR − fL) = 360 Hz ⁄ (375 Hz − 345 Hz) = 12, 

which exactly matches the design requirement. 

Scopeshots of fc, fL, and fR with Vin, Vout, and the -3 dB provided below. 



   

 

 

Scope Shot 1 - fc Peak Frequency of Bandpass Filter 

 

Scope Shot 2 - fL Left Frequency of Bandpass Filter 

 



   

 

 

Scope Shot 3 - fR Right Frequency of Bandpass Filter 

PART A Chebychev Low Pass Filter: 

 After the band-pass filter was completed, we moved on to Filter #2, the Chebyshev low-

pass filter (LPF), for construction and evaluation. As with the earlier stage, the design had to 

meet specific performance targets. For project assignment H, the required cutoff frequency, pass-

band ripple, filter order, and pass-band gain are listed in the specification table below: 

  Filter #2   

Type Characteristic (Ripple) Order (n) Cutoff (fo) Passband Gain (Ap) 

LPF Chebychev 1 dB 5 303 Hz 15 V/V 
Table 2 - Filter Specifications for Chebychev Low Pass Filter (LPF) Filter#2 

To synthesize the fifth-order Chebyshev low-pass filter, begin by listing the design 

targets: 

Ripple (ε) = 1 dB 

Filter order: n = 5 

Cutoff frequency: f₀ = 303 Hz 

Pass-band gain Aₚ: = 15 V/V 

Angular cutoff frequency: ω₀ = 2πf₀ = 2π × 303 Hz ≈ 1.904 × 10³ rad s⁻¹ 

 

 



   

 

With these parameters established, we consulted the laboratory handout for the 

normalized fifth-order Chebyshev denominator that corresponds to 1 dB ripple. The required 

polynomials are: 

 

Q5(s) = s5 + 0.937s4 + 1.689s3 + 0.974s2 + 0.581s + 0.123 

= (s + 0.289)(s2 + 0.179s + 0.988)(s2 + 0.468s + 0.429) 

Q2(s) = s2 + 1.425s + 1.516 

Q3(s) = (s + 0.626)(s2 + 0.626s + 1.142) 

To complete the transfer function H(s)=K/Q5(s), the scaling constant K must be chosen 

so that the magnitude at s=0 equals the specified pass-band gain Aₚ. Solving |H(0)|=Aₚ yields the 

value of K, after which the component-value synthesis can proceed. 

𝐾 = 𝐴𝑝 ∗ 𝑄(𝑠 = 0) 

𝐾 = (15)(0 + 0.289)(02 + 0.179(0) + 0.988)(02 + 0.468(0) + 0.429) 

𝐾 = 1.8374 

Once the scaling factor K is determined, the normalized transfer function takes the form 



   

 

𝐻(𝑠) =
𝐾

𝑄(𝑠)
 

For low-pass design, substitute s with s/w0, where:  
w0 = 1.904 ∗  103rad · s−1 

After this substitution, each denominator factor is algebraically scaled, so the coefficient 

of its highest-order term equals unity. 

The next step mirrors the procedure used for the band-pass filter: match the coefficients 

of the normalized transfer function to the standard first and second-order low-pass templates 

associated with the practical circuits being implemented. Because a fifth-order Chebyshev 

response is required, the realization employs two cascaded second-order low-pass sections 

followed by one first-order section, yielding the overall fifth-order response. All capacitors are 

fixed at 0.1 µF, so only the resistor values need to be calculated. The detailed algebra, coefficient 

matching, and resulting resistor selections are presented in the following step-by-step derivation: 

SIMPLIFY GENERAL TRANSFER EQUATION 

𝐻(𝑠) =
𝐾

𝑄(𝑠)
 

𝐻(𝑠) =
1.8374

(𝑠 + 0.289)(𝑠2 + 0.179𝑠 + 0.988)(𝑠2 + 0.468𝑠 + 0.429)
 

𝐻(𝑠) =
1.8374

(
𝑠

1903.81
+0.289)((

𝑠

1903.81
)2+0.179(

𝑠

1903.81
)+0.988)((

𝑠

1903.81
)2+0.468(

𝑠

1903.81
)+0.429)

, 

Replace s = s/w0 

𝐻(𝑠) =
1.8374

(
𝑠

1903.81
+0.289)((

𝑠

1903.81
)2+0.179(

𝑠

1903.81
)+0.988)((

𝑠

1903.81
)2+0.468(

𝑠

1903.81
)+0.429)

*
𝑠5

𝑠∗𝑠2∗𝑠2
 

𝐻(𝑠) =
1.8374

(
𝑠

1903.81
+0.289)((

𝑠

1903.81
)2+0.179(

𝑠

1903.81
)+0.988)((

𝑠

1903.81
)2+0.468(

𝑠

1903.81
)+0.429)

*

(
0.289

1
∗

0.988

1
∗

0429

1
)

(
0.289

1
∗

0.988

1
∗

0429

1
)
 

𝐻(𝑠)

=
1.8374(1903.81)5

(𝑠 + 0.289(1903.81))(𝑠2 + 0.179(1903.81)𝑠 + 0.988(1903.81)2)(𝑠2 + 0.468(1903.81)𝑠 + 0.429(1903.81)2)
 

 

SOLVE FOR ONE 2nd ORDER LPF RESISTANCES BY COMPARING COEFFICIENTS 



   

 

𝐻(𝑠) =
𝐴𝑜 ∗ (

1
𝑅𝐶)

2

𝑠2 +
3 − 𝐴𝑜

𝑅𝐶 𝑠 + (
1

𝑅𝐶)
2 

(
1

𝑅𝐶
)

2

= 0.988(1903.81)2 

((
1

𝑅(0.1 𝑢𝐹)
)

2

= 0.988(1903.81)2) = 𝑅 

R = 5284.43 Ω 

3 − 𝐴𝑜1

𝑅𝐶
= 0.179(1903.81) 

3 − 𝐴𝑜1

(5284.43)(0.1 𝑢𝐹)
= 0.179(1903.81) = 2.81992 

𝐴𝑜1 = 2.81992
𝑉

𝑉
 

FIND R1 & R2 USING GAIN EQUATION (Ao1) 

𝐴𝑜1 = 1 +
𝑅2

𝑅1
 

2.81992 = 1 +
𝑅2

𝑅1
 

Pick R1 = 10k Ω 

𝑅2 = 18199.2 Ω 

SOLVE FOR THE OTHER 2nd ORDER LPF RESISTANCES BY COMPARING 

COEFFICIENTS 

(
1

𝑅𝐶
)

2

= 0.429(1903.81)2 

(
1

𝑅(0.1 𝑢𝐹)
)

2

= 0.429(1903.81)2 = 𝑅 

R = 8019.51 

3 − 𝐴𝑜2

𝑅𝐶
= 0.468(1903.81) 

3 − 𝐴𝑜2

(8019.51)(0.1 𝑢𝐹)
= 0.468(1903.81) 

𝐴𝑜2 = 2.28548
𝑉

𝑉
 

FIND R1 & R2 USING GAIN EQUATION (Ao2) 



   

 

𝐴𝑜2 = 1 +
𝑅2

𝑅1
 

2.28548 = 1 +
𝑅2

𝑅1
 

Pick R1 = 10k Ω 

R2 = 12854.8 Ω 

SOLVE FOR ONE 1st ORDER LPF RESISTANCES BY COMPARING COEFFICIENTS 

𝐻(𝑠) = 𝐴𝑜 ∗

1
𝑅𝐶

𝑠 +
1

𝑅𝐶

 

1

𝑅𝐶
= 0.289(1903.81) 

1

𝑅(0.1 𝑢𝐹)
= 0.289(1903.81) = 𝑅 

R = 18175.2 Ω 

FIND R1 & R2 USING GAIN EQUATION (Ao3) 

𝐴𝑜1 ∗ 𝐴𝑜2 ∗ 𝐴𝑜3 = 15
𝑉

𝑉
 

(2.81992) ∗ (2.28548) ∗ 𝐴𝑜3 = 15
𝑉

𝑉
 

𝐴𝑜3 = 2.32743
𝑉

𝑉
 

𝐴𝑜 = 1 +
𝑅2

𝑅1
 

2.32743 = 1 +
𝑅2

𝑅1
 

Pick R1 = 10k Ω 

R2 = 13274.3 Ω 

After establishing the theoretical resistance values, each resistor was matched to the 

nearest available part. Where the exact value was unavailable, two resistors were placed in series 

to achieve the required total within tolerance. The completed filter is arranged as a cascade that 

begins with the first order low-pass stage, followed by the two second order stages, yielding the 

fifth-order Chebyshev response. Every active section uses a TL081 operational amplifier. The 

schematic below shows the final layout together with the rounded resistor values selected for 

each stage:   



   

 

Figure 2 - Chebychev Low Pass Filter Circuit Schematic 

PART B: Chebychev Low Pass Filter 

 Once the Chebyshev low-pass filter was assembled, its performance had to be verified. 

Two parameters were of primary interest: the cutoff frequency and the pass-band gain. Both 

were extracted from an experimental Bode-magnitude response plotted as |Vout / Vin| on the 

vertical axis versus frequency (Hz) on the horizontal axis. A dense set of measurement points 

was recorded across the spectrum to capture the characteristic shape: a nearly flat pass-band at 

low frequencies that exhibits a 1 dB ripple, followed by a steep roll-off beyond the cutoff. The 

resulting Bode plot confirms whether the observed cutoff frequency aligns with the specified 303 

Hz and whether the pass-band gain approaches the design target of 15 V/V: 

 

Bode Plot 3 – Chebychev LPF Bode Plot (Decimal) 



   

 

 

Bode Plot 4 - Chebychev LPF Bode Plot (dB) 

To confirm proper operation of the Chebyshev low-pass filter, focus on three parameters: 

the 1 dB pass-band ripple, the design cutoff frequency, and the specified pass-band gain. The 

ripple magnitude is evaluated first, using the following formula: 

𝑅𝑖𝑝𝑝𝑙𝑒 = 𝑃𝑒𝑎𝑘 𝑔𝑎𝑖𝑛 𝑖𝑛 𝑑𝐵 − 𝑙𝑜𝑤𝑒𝑠𝑡 𝑝𝑒𝑎𝑘 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑖𝑝𝑝𝑙𝑒 𝑖𝑛 𝑑𝐵  

Or 

𝑅𝑖𝑝𝑝𝑙𝑒 = 20 log(𝑝𝑒𝑎𝑘 𝑔𝑎𝑖𝑛 𝑑𝑒𝑐𝑖𝑚𝑎𝑙) − 20log (𝑙𝑜𝑤𝑒𝑠𝑡 𝑝𝑒𝑎𝑘 𝑜𝑓 𝑟𝑖𝑝𝑝𝑙𝑒 𝑔𝑎𝑖𝑛 𝑖𝑛 𝑑𝑒𝑐𝑖𝑚𝑎𝑙) 

𝑅𝑖𝑝𝑝𝑙𝑒 = 20 log(15.8) − 20 log(13.5) = 1.36 𝑑𝐵 

The measured response confirms that the Chebyshev low-pass stage is operating within 

tolerance: 

Ripple assessment 

The peak-to-peak variation in the pass-band, taken from the Bode plot, is 1.36 dB. 

Relative to the specified 1 dB ripple, the deviation is 0.36 dB, or approximately 36 percent. 

Cutoff frequency 

At very low frequencies the gain settles at the designed 15 V/V. Sweeping the input 

upward shows the gain returning to this 15 V/V plateau just before the response begins to fall, a 

point that occurs at 303 Hz. This measured cutoff frequency matches the design value exactly. 

Pass-band gain 

The constant low-frequency gain was recorded as 15 V/V, identical to the specification, 

so the error is effectively zero and was accepted by the instructor. 

These three observations—including ripple magnitude, cutoff alignment, and pass-band 

gain—demonstrate that the prototype meets the project requirements. 



   

 

 

STEP RESPONSES 

 Each filter’s step response was captured by sending the circuit a low-frequency square 

wave from the function generator, effectively approximating a unit-step input. The resulting 

oscilloscope traces for the band-pass network and the 1 dB-ripple, fifth-order Chebyshev low-

pass filter are shown below: 

 

Scope Shot 4 - Recorded Step Response for Bandpass Filter 



   

 

 

Scope Shot 5 - Recorded Step Response for Chebychev Low Pass Filter 

 

AFTER THE LAB  



   

 

CHEBYCHEV COMPARISON OF FREQUENCY RESPONSE  

Separate figures present the Bode-magnitude responses for the fifth-order Chebyshev 

low-pass filter and the resonant band-pass filter. For the Chebyshev stage, three traces are 

compared: the PSPICE simulation, the MATLAB analytical model, and the experimental curve 

previously labeled “Bode Plot 4” in Excel. Each plot is expressed in decibels, allowing a direct, 

side-by-side assessment of simulated versus measured performance. 

Bode Plot 5 – MATLAB Bode Plot for 5th Order Chebychev LPF in Decibel 



   

 

 

Bode Plot 6 - PSPICE Bode Plot for 5th Order Chebychev LPF in Decibel 

 A side-by-side review of Bode Plots 4, 5, and 6 shows that every curve follows the same 

amplitude-versus-frequency profile. The decibel-scale trace generated in Excel (Bode Plot 4) 

overlays almost exactly with the MATLAB result (Bode Plot 5) and the PSpice simulation (Bode 

Plot 6), demonstrating that the measured data match both analytical and circuit-level predictions 

within normal tolerance. 

BANDPASS COMPARISON OF FREQUENCY RESPONSE  

 Having verified the Chebyshev low-pass stage, the focus now moves to the band-pass 

network. The evaluation mirrors the previous procedure: overlay the experimental Bode curve 

generated in Excel with the corresponding MATLAB model and PSpice simulation. Comparing 

these three magnitude-response plots will confirm whether the band-pass filter meets its design 

specifications.  



   

 

 

Bode Plot 7 - MATLAB Bode Plot for Bandpass Filter in Decibel 

 

Bode Plot 8 - PSPICE Bode Plot for Bandpass Filter in Decibel 

 A direct overlay of the three magnitude responses: Bode Plot 2 from the experimental 

data, Bode Plot 7 from MATLAB, and Bode Plot 8 from PSpice, reveals near-perfect alignment 

across the full frequency range. The laboratory curve follows the simulated traces point-for-

point, confirming that the band-pass filter was designed and built in strict accordance with its 

theoretical model. 

 



   

 

CHEBYCHEV COMPARISON OF STEP RESPONSE 

 In the After the Lab review, both the Chebyshev low-pass and the band-pass filters are 

validated by comparing their step-response curves. The oscilloscope capture recorded during the 

experiment (Scope Shot 5) serves as the reference. Corresponding step-response plots produced 

in MATLAB and PSpice appear below, allowing a direct comparison with the hardware trace to 

confirm that the design methodology was sound. 

 

Scope Shot 6 - MATLAB Step Response for 5th Order Chebychev LPF 

 

Scope Shot 7 - PSPICE Step Response for 5th Order Chebychev LPF 

 A review of the three step-response curves shows that the MATLAB and PSpice 

simulations align closely, whereas the oscilloscope trace from the hardware prototype departs 



   

 

from both. Capturing a reliable step response for a fifth-order Chebyshev network demands an 

extremely low frequency square wave so the input approximates an ideal unit step within the 

oscilloscope’s time base. In our test, the function generator could not reach such a low repetition 

rate, and parasitic wiring impedances likely introduced additional distortion. Since the filter met 

every frequency-domain specification and was approved by the instructor, the discrepancy is 

attributed to the measurement setup rather than to the circuit design. 

 

BANDPASS COMPARISON OF STEP RESPONSE 

 To verify the band-pass filter, the same procedure used for the Chebyshev low-pass stage 

will be followed. The circuit’s step-response trace captured on the oscilloscope (Scope Shot 4) 

will be compared with the MATLAB simulation and the PSpice simulation. Agreement among 

these three plots will confirm that the band-pass filter was both designed and built correctly.  

 

Scope Shot 8 - MATLAB Step Response for Bandpass Filter 



   

 

 

 Scope Shot 9 - PSPICE Step Response for Bandpass Filter 

 A comparison of the three step-response graphs shows close agreement across the board. 

The oscilloscope trace from the physical circuit aligns with both the MATLAB and PSpice 

simulations, confirming that the band-pass filter was designed and assembled correctly. The 

slightly higher initial overshoot in the MATLAB plot is expected, because the software model 

assumes ideal components and a perfect unit-step input, ignoring real-world factors such as 

generator amplitude limits, component tolerances, and parasitic resistances. Once these 

differences are considered, all three curves validate the same dynamic behavior.  

 

 

 

 

 

 

 

 

 

 

 

 

III. SUMMARY OF RESULTS 
The table below summarizes the key measurements collected for Project H, specifically for the 

two filters (Filter #1: 2nd-order Resonant Bandpass; Filter #2: 5th-order Chebyshev LPF). 



   

 

Filter Specification Measured Result 

Resonant Bandpass Center Frequency: 360 Hz 360 Hz 

 Quality Factor: 12 12 

 Peak Gain: 15 V/V 13.98 V/V 

Chebyshev Low-Pass Cutoff Frequency: 303 Hz 303 Hz 

 Passband Gain: 15 V/V 15 V/V 

 Passband Ripple: ~1 dB 1.36 dB 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IV. CONCLUSION 
 

Resonant Bandpass Filter Overall Summary: 
 We started with the second-order bandpass filter since it had a simpler design and followed a 

standard resonant transfer function. The goal was to center the filter at 360 Hz with a quality of 



   

 

12, which gave us a narrow bandwidth. Using 𝜔0 = 2𝜋 ⋅ 360  rad/s and a concrete value for our 

capacitors, we calculated the resistor values based on the standard bandpass equation. This gave 

us R1 = 3.536kΩ, R2=194.32, and R3=106.103kΩ. When we tested the circuit in the lab, we 

measured a peak gain of 13.98V/V at 360 Hz. The gain was a little lower than expected, which 

might've been caused by issues with the older equipment on our workstation, possibly being the 

function generator or the oscilloscope. Even with this issue, our measurements still lined up well 

with the theoretical values, showing the filter worked as it was designed to. 

 

Chebyshev Low-Pass Filter Overall Summary: 

 For the fifth-order 1 dB ripple Chebyshev low-pass filter, our goal was supposed to center the 

filter at 303 Hz with a passband gain of 15 V/V. Given the requirement of being a 5th order low 

pass filter, it was required to build three stages in cascade: two second-order stages and one first-

order stage. The fifth-order Chebyshev polynomial with 1 dB ripple was used to determine the 

precise pole locations required for the filter's frequency response. These poles were then assigned 

to each stage, and component values were calculated by aligning the transfer functions with 

standard second- and first-order low-pass filter forms. During lab testing, the filter displayed the 

expected behavior: strong attenuation above the 303 Hz cutoff and consistent gain near 15 V/V 

in the passband. The sharp transition band and passband ripple closely matched the simulated 

response. Minor differences in ripple amplitude were likely due to component tolerances and 

limitations in the op-amps used, but overall, the measured performance confirmed that the design 

met the intended specifications. 

 

Key Findings: Modular filter construction, component tolerances and multiple analysis 

methods 

Interpreting the results demonstrated how well theoretical transfer functions and simulation tools 

can guide real-world analog filter design. With all the measured responses, bode plots and step 

responses, they all aligned closely with both MATLAB and PSpice simulations, confirming that 

the design approach was effective in each case. One major takeaway was the importance of 

modular filter construction. Higher-order filters like the fifth-order Chebyshev we were assigned 

was successfully implemented by cascading first and second–order stages, making the design 

both manageable and scalable. Another key insight was the impact of component tolerances and 

equipment limitations, which caused minor deviations in gain and ripple that would not appear in 

ideal simulations. Lastly, this experiment reinforced the need to use multiple analysis methods: 

frequency sweeps gave precise data on gain and cutoff behavior, while step response revealed 

how the filters behaved in the time domain, including damping and transient characteristics. 

Final Summary: 

In conclusion, this experiment demonstrated the value of combining theoretical design methods 

with practical testing. Utilizing the standard filter equations, polynomial approximations, and 

circuit simulations, we were able to successfully build the two distinct active filters we were 

assigned being the resonant bandpass and the Chebyshev low-pass, both of which met the target 

specifications for gain and frequency response. After going through both the design and 



   

 

verification stages, it reinforced how important it is to bridge theory, simulation, and real-world 

measurements when developing reliable analog filter circuits. 


